Posetに対するメビウスの反転公式

をposetとする(反射律・推移律・反対称律を満たす)。が局所有限であるとは、任意のに対してが有限集合であるときにいう。局所有限なposet に対して、Möbius関数 をが成り立つように定義する(に対してのみを定義する。はKroneckerのデルタ。well-defined)。定理 (Möbiusの反転公式) を局所有限なposetとし、を関数とする。…